基于Bayes滤波的移动机器人定位方法  被引量:13

Research on Self-localization Methods for Mobile Robots Based on Bayes Filter

在线阅读下载全文

作  者:赵增顺[1,2] 沈继毕[1] 王继贞[1] 侯增广[3] 谭民[3] 

机构地区:[1]山东科技大学信息与电气工程学院,青岛266510 [2]山东省机器人与智能技术重点实验室,青岛266510 [3]中国科学院自动化研究所,北京100080

出  处:《计算机科学》2011年第2期199-201,共3页Computer Science

基  金:863项目(2006AA04Z219);国家自然科学基金(60805028;60903146;60775043);山东省自然科学基金(ZR2010FM027)资助。

摘  要:对基于贝叶斯滤波原理的机器人定位方法提出了一个通用框架,进行了贝叶斯滤波方法的推导,理顺了贝叶斯总体框架以及卡尔曼滤波定位、多假设定位、马尔可夫定位、蒙特卡罗定位方法之间的内在逻辑关系。回顾了基于概率推理框架的各种机器人定位方法的发展过程、目前发展水平,并针对各自的利弊进行了比较。基于采样的蒙特卡罗定位算法能够描述多峰分布,可近似大范围的概率分布,能够有效解决定位过程中出现的歧义情况以及绑架情况等,因此重点对蒙特卡罗定位算法的实现过程以及存在的问题进行了详细的阐述,同时对研究难点和未来的发展趋势做了展望。This article presented a survey of the most common probabilistic models for self localization algorithm of mobile robot.We proposed a general Bayesian inference framework which is deduced in detail through a combination of Markov assumption with Bayesian rule.Under such general framework,we gave a review of the main probabilistic mo-dels such as Kalman Filtering Series,Multi-hypothesis Localization,Markov Model Localizations and Monte Carlo localization,etc.,all of which can be captured under this single formalism.This will provide readers a global view of this li-terature.We emphasized the implementation and drawbacks of Monte Carlo Localization,which is considered as one of the most promising method.

关 键 词:贝叶斯滤波 机器人定位 蒙特卡罗定位 马尔可夫定位 

分 类 号:TP242.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象