检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学车辆工程系,南京210016
出 处:《农业机械学报》2011年第2期23-27,22,共6页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金资助项目(10902049);国家高技术研究发展计划(863计划)资助项目(2008AA11A140);南航引进人才科研基金资助项目(S0915-022)
摘 要:将粒子滤波(particle filter,PF)算法应用到汽车的状态估计之中,建立了包含定常统计特性噪声和非线性轮胎的汽车动力学模型,根据汽车非线性状态转移函数完成对粒子的预测,基于当前时刻的量测值实现对预测粒子权重的评估,最后通过重采样完成对汽车关键状态量估计。将PF估计器与常见的EKF、UKF估计器进行了比较分析,基于ADAMS/Car的虚拟试验和实车试验验证了PF在汽车状态估计中的可行性。Particle filter(PF) algorithm was used in vehicle states estimation.A vehicle dynamics system containing constant noise and non-linear tire model was established.First,the particles were predicted through non-linear state transition function;then the weights of the predicted particles were evaluated based on current measurements.Finally,the key states were estimated though resample step.The PF estimator was compared with other estimators based on extended Kalman filter(EKF) and unscented Kalman filter(UKF).The results of virtual experiment based on ADAMS/Car and real vehicle experiment demonstrated that PF was available in vehicle states estimation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15