检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙铁道学院数理力学系 [2]复旦大学数学系
出 处:《应用数学和力学》1999年第6期625-632,共8页Applied Mathematics and Mechanics
摘 要:首先对广义Pochhammer_Chre方程(PC方程)ut-utxx+ruxxt-(a1u+a2u2+a3u3)xx=0(r≠0)(Ⅰ)的孤波解u(ξ)建立了公式∫+∞-∞[u′(ξ)]2dξ=112rv(C+-C-)3[3a3(C++C-)+2a2]·由此推知:广义PC方程(Ⅰ)不可能有钟状孤波解,只可能有扭状孤波解;而广义PC方程ut-utxx-(a1u+a2u2+a3u3)xx=0(Ⅱ)可能既有钟状孤波解又有渐近值满足3a3(C++C-)+2a2=0的扭状孤波解·进一步求出了广义PC方程(Ⅰ)的扭状孤波解。For solitary_wave solutions u(ξ)=u(x-vt+ξ 0) to the generalized Pochhammer_Chree equation (PC equation) u tt -u ttxx +ru xxt -(a 1u+a 2u 2+a 3u 3) xx =0 r,a i= consts (r≠0),(Ⅰ) the formula ∫ +∞ -∞ 2 d ξ=112rv(C +-C -) 3[3a 3(C ++C -)+2a 2], C ±= lim ξ→±∞u(ξ), is established, by which it is shown that the generalized PC equations (Ⅰ) has not bell profile solitary_wave solutions but may have kink profile solitary_wave solutions. However a special generalized PC equation u tt -u ttxx -(a 1u+a 2u 2+a 3u 3) xx =0, a i= consts (Ⅱ) may have not only bell profile solitary_wave solutions, but also kink profile solitary wave solutions whose asymptotic values satisfy 3a 3(C ++C -)+2a 2=0. Furthermore all expected solitary_wave solutions are given. Finally some explicit bell profile solitary_wave solutions to another generalized PC equation u tt -u ttxx -(a 1u+a 3u 3+a 5u 5) xx =0, a i= consts (Ⅲ) are proposed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.238.221