一类非线性多时滞脉冲抛物型方程解的振动性质  

Oscillation Properties of Solutions for a Class of Nonlinear Impulsive Parabolic Equations with Several Delays

在线阅读下载全文

作  者:冯菊[1] 李树勇[2] 

机构地区:[1]西华师范大学美术学院,南充637009 [2]四川师范大学数学与软件科学学院,成都610068

出  处:《工程数学学报》2011年第2期251-259,共9页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(10671133);西华师范大学科研启动基金(08B028)~~

摘  要:本文研究一类非线性多时滞脉冲抛物型方程在齐次Dirichlet和Neumann边界条件下解的振动性质.利用分析技巧,给出一个脉冲微分不等式无最终正解(或最终负解)的条件.然后,利用平均法,将该方程解振动性问题转化为相应脉冲时滞微分不等式有无最终正解(或最终负解)问题,进而在两类齐次边界条件下获得了判别该类方程解振动的充分条件.Oscillation of solutions to a class of nonlinear impulsive parabolic differential equations with several delays is discussed under the homogeneous Dirichlet and Neumann boundary conditions.Some sufficient conditions of the impulsive differential inequalities which don't have eventually positive solutions (or eventually negative solutions) are obtained by employing the analysis technique.Then,the oscillation problems are transformed into the impulsive differential inequalities which don't have eventually positive solutions (or eventually negative solutions) by using the average method.Some suf-ficient conditions for oscillation are obtained under the homogeneous Dirichlet and Neumann boundary conditions.

关 键 词:非线性 时滞 脉冲 抛物型方程 振动性 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象