检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华师范大学美术学院,南充637009 [2]四川师范大学数学与软件科学学院,成都610068
出 处:《工程数学学报》2011年第2期251-259,共9页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(10671133);西华师范大学科研启动基金(08B028)~~
摘 要:本文研究一类非线性多时滞脉冲抛物型方程在齐次Dirichlet和Neumann边界条件下解的振动性质.利用分析技巧,给出一个脉冲微分不等式无最终正解(或最终负解)的条件.然后,利用平均法,将该方程解振动性问题转化为相应脉冲时滞微分不等式有无最终正解(或最终负解)问题,进而在两类齐次边界条件下获得了判别该类方程解振动的充分条件.Oscillation of solutions to a class of nonlinear impulsive parabolic differential equations with several delays is discussed under the homogeneous Dirichlet and Neumann boundary conditions.Some sufficient conditions of the impulsive differential inequalities which don't have eventually positive solutions (or eventually negative solutions) are obtained by employing the analysis technique.Then,the oscillation problems are transformed into the impulsive differential inequalities which don't have eventually positive solutions (or eventually negative solutions) by using the average method.Some suf-ficient conditions for oscillation are obtained under the homogeneous Dirichlet and Neumann boundary conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222