基于遗传算法的两足步行机器人步态优化  被引量:7

Gait Optimization of Biped Robot Using Genetic Algorithm

在线阅读下载全文

作  者:姜山[1] 程君实[1] 陈佳品[1] 包志军[2] 

机构地区:[1]上海交通大学信息存储研究中心,上海200030 [2]上海交通大学机械工程学院

出  处:《上海交通大学学报》1999年第10期1280-1283,共4页Journal of Shanghai Jiaotong University

摘  要:将具有24 个自由度的机器人JFHR简化为7 连杆机构,建立了描述机器人姿态的位置向量.用三次多项式拟合机器人髋关节和踝关节的位置轨迹,并通过动力学模型建立能量消耗表达式,得到能量最优的步态,即多项式系数的获得就可以表示为一个多变量最小值的优化问题,最后应用遗传算法(Genetic Algorithm , GA)获得最优解.在GA设计中,将每一个需要优化的参数用10位二进制数表示,种群中染色体的个数为50,演化的代数固定为100,杂交率和变异率分别定为0.8和0.04.对平地步行和斜坡步行进行了仿真.A 24 DOF humanoid robot (JFHR) was chosen for gait optimization. The dynamic model of JFHR was established as a seven link biped. Motion of the hip and feet during a regular step was then modeled by the 3rd order polynomials, and the energy consumption was obtained to form the robot dynamic equation. Therefore, the energy optimal gait, which is represented by the coefficients of polynomials, may be expressed as a multi variable minimization problem, and genetic algorithm was applied to obtain the optimal solution. In the genetic algorithm designing, every parameter to be optimized is encoded as 10 bit binary string, the total length of each chromosome is decided by the parameter number. The population for each generation is 50, the evolvement generation is fixed to 100. The crossover rate and mutation rate are set to 0.8 and 0.04 respectively. The simulation of walking on level ground and incline was presented.

关 键 词:两足步行机器人 机器人 步态优化 遗传算法 姿态 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] O242.23[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象