平均间断有限元的强超收敛性及在Hamilton系统的应用  被引量:1

Ultraconvergence for Averaging Discontinuous Finite Elements and Its Applications in Hamiltonian System

在线阅读下载全文

作  者:李灿华[1] 陈传淼[1] 

机构地区:[1]湖南师范大学数学与计算机科学学院,长沙410081

出  处:《应用数学和力学》2011年第7期883-894,共12页Applied Mathematics and Mechanics

基  金:Project supported by the National Natural Science Foundation of China (No. 10771063)

摘  要:讨论了常微分方程初值问题的k次平均间断有限元.当k为偶数时,证明了在节点上的平均通量(间断有限元在节点上的左右极限的平均值)有2k+2阶最佳强超收敛性.对具有动量守恒的非线性Hamilton系统(如Schr dinger方程和Kepler系统),发现此类间断有限元在节点上是动量守恒的.这些性质被数值试验所证实.The k-degree averaging discontinuous finite element solution for the initial value problem of ordinary differential equations was discussed.When k was even,it was proved that the averaging numerical flux(the average of left and right limits for discontinuous finite element at nodes) had the optimal order ultraconvergence 2k+2.For nonlinear Hamiltonian systems(e.g.,Schrdinger equation and Kepler system) with momentum conservation,it was found that the discontinuous finite element methods preserve momentum at nodes.These properties were confirmed by numerical experiments.

关 键 词:平均间断有限元 强超收敛 HAMILTON系统 动量守恒 

分 类 号:O242.21[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象