检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南师范大学数学与计算机科学学院,长沙410081
出 处:《应用数学和力学》2011年第7期883-894,共12页Applied Mathematics and Mechanics
基 金:Project supported by the National Natural Science Foundation of China (No. 10771063)
摘 要:讨论了常微分方程初值问题的k次平均间断有限元.当k为偶数时,证明了在节点上的平均通量(间断有限元在节点上的左右极限的平均值)有2k+2阶最佳强超收敛性.对具有动量守恒的非线性Hamilton系统(如Schr dinger方程和Kepler系统),发现此类间断有限元在节点上是动量守恒的.这些性质被数值试验所证实.The k-degree averaging discontinuous finite element solution for the initial value problem of ordinary differential equations was discussed.When k was even,it was proved that the averaging numerical flux(the average of left and right limits for discontinuous finite element at nodes) had the optimal order ultraconvergence 2k+2.For nonlinear Hamiltonian systems(e.g.,Schrdinger equation and Kepler system) with momentum conservation,it was found that the discontinuous finite element methods preserve momentum at nodes.These properties were confirmed by numerical experiments.
关 键 词:平均间断有限元 强超收敛 HAMILTON系统 动量守恒
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229