带时滞项的中立型脉冲微分方程的周期边值问题(英文)  被引量:2

Periodic Boundary Value Problems for Impulsive Neutral Differential Equations with Delay Argument

在线阅读下载全文

作  者:叶国炳[1] 申建华[2] 李建利[3] 

机构地区:[1]湖南工业大学理学院,株洲412007 [2]杭州师范大学理学院,杭州310036 [3]湖南师范大学数学与计算机科学学院,长沙410081

出  处:《工程数学学报》2011年第4期555-564,共10页Chinese Journal of Engineering Mathematics

基  金:The National Natural Science Foundation of China(10871062)

摘  要:脉冲微分方程是模拟控制理论、物理学、化学、生物技术、工业机器人等方面的一些过程和现象的一种非常好的模型.本文研究了带时滞项的中立型脉冲微分方程的周期边值问题的极小值与极大值解的存在性.首先引入了方程新的上下解概念,然后发展了一个脉冲不等式.利用它们和单调迭代法,获得了两个新的比较原理,并利用线性化的方法,进一步建立了该方程极值解的一个存在准则,所得主要结果改进和推广了现有文献中的一些结果.最后,举例说明了这个存在准则的有效性.Recently, the impulsive differential equations are recognized as an excellent source of mod els for simulating processes and phenomena observed in control theory, physics, chemistry, biotechnology, industrial robotics, etc.. In this paper, we study the existence of the minimal and maximal solutions of the periodic boundary value problems for impulsive neutral differential equations with delay argument. First, a new concept of lower and upper solutions of the equations is introduced. Then the impulsive inequality is developed. By using the inequality and the monotone iterative technique, we obtain two new comparison principles, and establish a new existence criterion of extremal solutions for the equations by the linearized technique. Our main result improves and generalizes some well known results in the literature. Finally, an example is given to illustrate the effectiveness of the proposed existence criterion.

关 键 词:脉冲中立型微分方程 周期边值 上下解 单调迭代法 极值解 

分 类 号:O175.14[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象