检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]阜阳师范学院数学系,安徽236032 [2]中国科学技术大学数学系,合肥230026
出 处:《Journal of Mathematical Research and Exposition》1999年第4期747-752,共6页数学研究与评论(英文版)
摘 要:本文给出并证明了定理;设M为具非正截曲率的完备Riemann流形,T:[0,+)→M为M上的正规测地线,U是沿T且初值为零的非平凡正常Jacobi场,若存在a>0,t0>0,使得当t≥t0时,有U(t)≤t,且lim K(U)(t)存在,则lim K(U)(t)=0.In this paper, we give and prove the following theorem: If M is a complete Riemannian manifold with non-positive curvature, r: [0, ) M be a normal geodesic on M, U bea non-trivial normal Jacobi field along r and U (0) = 0, and if there is a a> 0,to>0 so thatU (t) with to, and limK (U)=(t) =0 existence, then limK(rU)(t)=0.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147