卡尔曼滤波与H_∞滤波在INS/GPS组合导航中的应用  被引量:1

Application of Kalman Filtering and H Filtering for INS/GPS Integration

在线阅读下载全文

作  者:辜道威[1] 程鹏飞[1] 蔡艳辉[1] 李为乔[1] 

机构地区:[1]中国测绘科学研究院,北京100830

出  处:《全球定位系统》2011年第3期26-28,56,共4页Gnss World of China

摘  要:组合导航利用惯性导航(INS)和全球定位系统(GPS)较强的非相似性和互补性,将两者组合,可以取长补短,充分发挥各自的优点,提高导航系统性能。利用卡尔曼滤波能够有效提高其精度,但卡尔曼滤波的应用要求函数模型和随机模型已知,符合实际,这在实际应用中是很难保证的,一般都是通过经验信息确定。H滤波则具有很强的鲁棒性,抗干扰性强。通过仿真数据处理,结果表明:H滤波比卡尔曼滤波在噪声特性未知时更适用,精度更高。Integrated navigation get INS and GPS together by their strong non-similarity and complementarity, can give their respective advantages and improve the navigation system performance. Kalman filter can improve the navigation system accuracy, but the application of Kalman filter model and the stochastic model is known previously, agree with reality, which in practice is difficult to guarantee, generally get it by empirical information. H filter have a strong robustness,and is immunity to interference. By the simulation data processing, the results show that the H filter is the more applicable and more accurate than the Kalman filte as noise characteristics is unknown

关 键 词:卡尔曼滤波 H∞滤波 INS/GPS 组合导航 

分 类 号:V249.32[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象