检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学数学系,兰州730070 [2]西安交通大学理学院,西安710049
出 处:《工程数学学报》2011年第6期727-735,共9页Chinese Journal of Engineering Mathematics
基 金:The National Natural Science Foundation of China(10901075);the Key Project of Chinese Ministry of Education(210226)
摘 要:应用Green函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.本文讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Carathéodory条件,利用非紧性测度的性质和Mnch’s不动点定理证明解的存在性.By means of the Green function, the boundary value problem of fractional differential equation can be reduced to the equivalent integral equation. Recently, this method is used successfully to discuss the existence of the solution to the boundary value problem of nonlinear fractional differential equations. This article investigates the boundary value problem of nonlinear fractional differential equation. By applying Carathéodory conditions on the nonlinear terms, we obtain an existence result for the solution. Our analysis relies on the measure of noncompactness, the Mnch fixed point theorem and the reduction of the considered problem to its equivalent integral equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7