检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2012年第1期53-57,共5页Control and Decision
基 金:国家自然科学基金项目(61075073);高等学校博士学科点专项科研基金项目(20093402110014)
摘 要:结合灰色预测模型和粒子滤波,提出一种新的视觉目标跟踪算法.由于粒子滤波未考虑先验信息对建议分布产生的指导作用,不能很好地逼近后验概率分布,对此,采用历史状态估计序列作为先验信息,建立该序列的灰色预测模型来预测产生建议分布.与粒子滤波、卡尔曼粒子滤波和无迹粒子滤波进行对比实验,结果表明所提出的算法在视觉目标跟踪中具有更好的性能.In this paper, a visual tracking algorithm is proposed by combining particle filter with grey prediction model. Particle filter does not take into account the guidance of historical prior on the generation of proposal distribution, so that it can not approximate posterior density well; Therefore, the history of state estimation sequence is utilized as prior information to set up grey prediction model for predicting and generating proposal distribution. Through the comparison to particle filter, Kalman particle filter and unscented particle filter, the proposed algorithm exhibits better performance in visual tracking.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225