改进的均值漂移和粒子滤波混合跟踪方法  被引量:6

Improved object tracking method based on mean shift and particle filter

在线阅读下载全文

作  者:李科[1] 徐克虎[1] 黄大山[1] 

机构地区:[1]装甲兵工程学院控制工程系,北京100072

出  处:《计算机应用》2012年第2期504-506,共3页journal of Computer Applications

基  金:国防预研基金资助项目(9140A09050708JB3503)

摘  要:为提高粒子滤波视觉目标跟踪算法的准确性和实时性,提出一种基于均值漂移和粒子滤波的混合跟踪算法。将相异性较小的粒子进行聚类,利用均值漂移算法迭代各个聚类中的代表点,通过减少参与均值漂移迭代的粒子数来降低运算复杂度;根据跟踪情况自适应调整采样粒子数目和过程噪声分布,以提高跟踪精度和减少运算时间。实验结果表明,所提算法平均每帧计算时间不到传统混合跟踪法的一半,而且跟踪精度也有所提高。To improve the accuracy and real-time performance of particle filter algorithm for tracking vision object, an improved algorithm in combination with mean shift and particle filter was proposed. Similar particles were clustered, and representative particles were iterated in each cluster by using mean shift algorithm. Then computation complexity was reduced by fewer mean shift iterative particles. Particle number and process noise distribution were adjusted adaptively based on tracking condition to improve tracking accuracy and reduce computation complexity. The experimental results prove the superiority of the proposed method, the average of each frame' operation time of this method is less than half of classic bybrid alzorithm, and its comoutation comolexitv is also less than classic bvbrid alzorithm.

关 键 词:目标跟踪 均值漂移 粒子滤波 重采样 过程噪声 

分 类 号:TP317.4[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象