非双倍测度下多线性奇异积分算子及其交换子在Morrey空间上的有界性  

Boundedness of multilinear singular integrals and their commutators on Morrey spaces for non-doubling measures

在线阅读下载全文

作  者:周娟[1] 朱月萍[1] 

机构地区:[1]南通大学理学院,南通226007

出  处:《黑龙江大学自然科学学报》2012年第2期189-195,共7页Journal of Natural Science of Heilongjiang University

基  金:国家自然科学基金资助项目(10971228);江苏省教育厅研究生创新项目(CXZZ11-0633);南通大学自然科学基金资助项目(11ZY002);南通大学研究生创新项目(YKC11051)

摘  要:非齐型空间上多线性奇异积分算子的有界性问题,自20世纪末由Tolsa等人提出后,广为人们所关注。设μ是非双倍测度,借助RBMO函数的等价刻划,以及多线性奇异积分算子的核满足的条件,证明如果多线性奇异积分算子T从L1(μ)×…×L1(μ)到Lm1,∞(μ)有界,则T以及它与有界平均振荡函数生成的交换子是从Mpq11(μ)×…×Mpqmm(μ)到Mpq(μ)有界的算子。Many mathematicians have paid their attentions to the boundedness problem of multilinear singular integral operators since it was put forward at the end of last century.Assume that μ is a non-doubling measure.By the equivalent characterization of RBMO functions and the properties of the kernel of multilinear singular integral operators,it is proven that T and its commutators with RBMO functions are bounded form Mq1^p1(μ)×…×Mqm^pm(μ) to Mq^p(μ) provided that the multilinear singular operator T is bounded from L^1(μ)×…×L^1(μ) to L^1/m,∞(μ).

关 键 词:非双倍测度 多线性奇异积分 交换子 MORREY空间 RBMO函数 

分 类 号:O174.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象