基于自类推与NSCT的单幅图像超分辨率技术  

Single Image Super Resolution Based on Self-Analogies and NSCT

在线阅读下载全文

作  者:程倩倩[1] 范新南[1] 李庆武[1] 

机构地区:[1]河海大学计算机与信息学院,江苏常州213022

出  处:《激光与光电子学进展》2012年第5期69-75,共7页Laser & Optoelectronics Progress

基  金:国家自然科学基金(60972101;60872096);疏浚技术教育部工程研究中心开放基金(HDCN08002);江苏省社会发展科技项目(BS2007058)资助课题

摘  要:在很多实际应用中很难获得适当的图像训练集,但是单幅图像放大却是一个病态问题。利用图像局部结构的自相似性和可传递性,结合非下采样Contourlet变换(NSCT)的优点,提出一种基于自类推与NSCT的单幅图像超分辨率重建(SRR)方法。采用NSCT对源图像和退化图像进行多尺度、多方向分解,得到用于学习的各带通方向子带对,利用图像自类推技术生成高分辨率的各带通方向子带,与立方插值放大后的源图像进行NSCT重构得到超分辨率重建图像。实验结果表明,该方法可以独立进行,摆脱一般方法对训练结合的依赖,能产生更为合理的细节,视觉边缘更清晰,图像更逼真。In lots of cases, it's difficult to obtain appropriate image training set, but single-image zooming is an ill- posed problem. Using the self-similarity feature among local structure in an image which can be maintained in the scale space and the advantage of nonsubsampled contourlet transform (NSCT), a single image super-resolution reconstruction (SRR) algorithm based on image analogies and NSCT is proposed. NSCT is performed on the original image and the degraded image at different scales and directions, thus varieties of directional bandpass subband pairs are obtained. The relationships between the subband pairs by image self-analogies are learned to generate high resolution varieties of directional bandpass subband. The super-resolution reconstructed image is obtained by transforming these changed subband coefficients and the zoomed-original image by bicubic interpolation back to the spatial domain. The experimental results show that the algorithm can be executed independently without any supposed outliers. It can generate more reasonable details than general methods, thus the edges are much clearer and the image is more natural-looking.

关 键 词:图像处理 超分辨率 非下采样CONTOURLET变换 自类推 

分 类 号:TP911.73[自动化与计算机技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象