大量程柔性铰六维力传感器静态解耦的研究  被引量:19

Research on static decoupling of large range flexible joint six-axis force sensor

在线阅读下载全文

作  者:石中盘[1,2] 赵铁石[2] 厉敏[1] 赵延治[2] 丁长涛[2] 

机构地区:[1]燕山大学信息科学与工程学院,秦皇岛066004 [2]燕山大学机械工程学院,秦皇岛066004

出  处:《仪器仪表学报》2012年第5期1062-1069,共8页Chinese Journal of Scientific Instrument

基  金:国家自然科学基金(51105322);高等学校博士学科点专项科研基金(20101333120001);河北省首批百名优秀中青年人才支持计划资助项目

摘  要:为提高大量程六维力传感器的测量精度,提出了一种新型的六维力传感器非线性静态解耦方法,该方法结合混合递阶遗传算法和小波神经网络的优点,采用递阶遗传算法与最小二乘法分别对小波神经网络隐层结构参数以及输出层权值进行优化,再将优化后的小波神经网络模型用于六维力传感器非线性解耦。建立了基于混合递阶遗传算法和优化小波神经网络的六维力传感器非线性解耦模型,设计了基于混合递阶遗传算法的小波神经网络结构及参数优化算法,给出了六维力传感器非线性解耦的具体实现流程。以最新研制的6-UPUR大量程柔性铰六维力传感器为对象进行实验,结果表明,采用该方法六维力传感器的Ⅰ类误差和Ⅱ类误差分别为1.25%和2.59%,比采用BP和RBF神经网络方法的测量精度高。A new six-axis force sensor nonlinear static decoupling method that has the advantages of hybrid hierarchy genetic algorithm and wavelet neural network is proposed to improve the measurement accuracy of large range six-axis force sensor.Hierarchical genetic algorithm and least-squares method are respectively used to optimize the hidden layer structure parameters and output layer weights of wavelet neural network,and the optimized wavelet neural network model is applied to six-axis force sensor nonlinear decoupling.A six-axis force sensor nonlinear decoupling model based on the optimized wavelet neural network model is established,an algorithm based on hybrid hierarchy genetic algorithm is designed to optimize the structure and parameters of wavelet neural network.The nonlinear decoupling realization process of the six-axis force sensor is given.Experiment was carried out on a 6-UPUR large range flexible joint six-axis force sensor recently designed,and the experimental results show that the class I errors and class II errors,measured using the method proposed in this paper,are 1.25% and 2.59%,respectively;the measurement accuracy is better than those using the methods of BP and RBF neural networks.

关 键 词:六维力传感器 大量程 静态解耦 混合递阶遗传算法 小波神经网络 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象