基于云模型的粒子群优化算法在路径规划中的应用  被引量:4

Application of particle swarm optimization algorithm based on cloud model for path planning

在线阅读下载全文

作  者:魏连锁[1] 戴学丰[1] 

机构地区:[1]齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006

出  处:《计算机工程与应用》2012年第17期229-232,共4页Computer Engineering and Applications

基  金:黑龙江省科学技术研究项目(No.11551542)

摘  要:利用罚函数将机器人路径规划有约束优化问题转换为无约束优化问题。利用云模型既有随机性又有稳定倾向性的特性,引入基于云模型理论的自适应参数策略,构造出一种改进的粒子群(PSO)算法,并应用于机器人路径规划问题。在不同的子群采用不同的惯性权重生成方法,有效地平衡了算法的局部和全局搜索能力,提高了种群的多样性和算法的收敛速度。仿真结果对比验证了该算法的可行性和有效性,且实现简单、收敛速度快。The penalty function is used to change the constrained problem into the unconstrained problem in path planning of robots. By using the randomicity and stable tendentiousness characteristics of cloud model, an adaptive strategy for varying parameters of Particle Swarm Optimization (PSO) theory is introduced based on cloud model. So an improved Particle Swarm Optimization (PSO) algorithm is constructed and applied to path planning of robots. By adopting different inertia weight generating methods in different groups, the searching ability of the algorithm in local and overall situation is balanced effectively. And it does not only improve the convergence speed, but also maintains the diversity of the population. The feasibility and effectiveness are proved by the comparative results of the simulation experiments. And also the algorithm can be achieved simply and has fast convergence rate.

关 键 词:云模型 粒子群算法 路径规划 自适应参数调整 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象