检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006
出 处:《计算机工程与应用》2012年第17期229-232,共4页Computer Engineering and Applications
基 金:黑龙江省科学技术研究项目(No.11551542)
摘 要:利用罚函数将机器人路径规划有约束优化问题转换为无约束优化问题。利用云模型既有随机性又有稳定倾向性的特性,引入基于云模型理论的自适应参数策略,构造出一种改进的粒子群(PSO)算法,并应用于机器人路径规划问题。在不同的子群采用不同的惯性权重生成方法,有效地平衡了算法的局部和全局搜索能力,提高了种群的多样性和算法的收敛速度。仿真结果对比验证了该算法的可行性和有效性,且实现简单、收敛速度快。The penalty function is used to change the constrained problem into the unconstrained problem in path planning of robots. By using the randomicity and stable tendentiousness characteristics of cloud model, an adaptive strategy for varying parameters of Particle Swarm Optimization (PSO) theory is introduced based on cloud model. So an improved Particle Swarm Optimization (PSO) algorithm is constructed and applied to path planning of robots. By adopting different inertia weight generating methods in different groups, the searching ability of the algorithm in local and overall situation is balanced effectively. And it does not only improve the convergence speed, but also maintains the diversity of the population. The feasibility and effectiveness are proved by the comparative results of the simulation experiments. And also the algorithm can be achieved simply and has fast convergence rate.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33