检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学机电工程与自动化学院,上海200072 [2]上海大学上海市应用数学和力学研究所,上海200072 [3]上海邮电设计咨询研究院有限公司,上海200092
出 处:《噪声与振动控制》2012年第3期25-28,48,共5页Noise and Vibration Control
基 金:上海市机械自动化及机器人重点实验室(ZZ0804);上海市重点学科建设项目(S30106)
摘 要:在两端简支边界条件下,研究超临界速度范围内轴向运动梁横向非线性受迫振动的稳态响应。考虑Kelvin本构关系,通过坐标变换建立一个积分偏微分方程,以此描述高速轴向运动梁受到一个周期的外激励后所作的微幅振动。用8阶Galerkin方法截断标准控制方程,然后使用有限差分法计算受迫振动稳定的稳态响应。结果表明,在超临界速度范围,当激励频率接近前两阶固有频率时存在共振现象。The steady-state periodic response of transversely forced vibration of a simply supported viscoelastic beam moving axially at the supercritical speed was investigated. It was assumed that the external excitation is spatially uniform and temporally harmonic. Based on the coordinate transform, a nonlinear integro-partial-differential equation governing the small transverse vibration of the beam was constituted by the Kelvin model. The first two resonances were analyzed via the 8-term Galerkin truncation method. Based on the Galerkin tnmcation, the finite difference schemes were developed to compute the stable steady-state response. Numerical simulations display that the resonance occurs if the load frequency approaches any natural frequency in the supercritical speed range.
关 键 词:振动与波 高速轴向运动梁 非线性 受迫振动 稳态响应 GALERKIN方法
分 类 号:O32[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117