渐近非扩张非自映射的收敛定理(英文)  被引量:1

Convergence Theorems for Nonself Asymptotically Nonexpansive Mappings

在线阅读下载全文

作  者:阚绪周[1] 郭伟平[1] 

机构地区:[1]苏州科技学院数理学院,江苏苏州215009

出  处:《应用数学》2012年第3期638-647,共10页Mathematica Applicata

基  金:Supported by the Foundation for Major Subject of Suzhou University of Science and Technology

摘  要:设E是实的一致凸Banach空间,K是E的一个非空闭凸集,P是E到K上的非扩张的保核收缩映射.(i)如果T1,T2,T3中有一个是全连续的或者半紧的,则{xn)强收敛于某一点q∈F;(ii)如果E具有Frechet可微范数或者满足Opial's条件或者E的对偶空间E*具有Kadec—Klee性质,则{xn)弱收敛于某一点q∈F.Suppose that K is a nonempty closed convex subset of a real uniformly convex Banach space E with P as a nonexpansive retraction. Let T1, T2, T3 : K→ E be three nonself asymptotically nonexpansive mappings with sequences where {an }, {βn} and {γn} are three real sequences in [-ε, 1- ε] for some e 〉 0. (i) If one of T1, T2 and T3 is completely continuous or demicompact,then strong convergence of {xn } to some q E F are obtained. (ii) If E has a Fr6chet differentiable norm or satisfying Opial's condition or its dual E has the Kadec-Klee property,then weak convergence of {xn } to some q E F are obtained.

关 键 词:一致凸BANACH空间 渐近非扩张非自映射 强收敛 弱收敛 公共不动点 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象