检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓花[1] 李亚安[1] 房媛媛[1] 白晓娟[1]
出 处:《声学技术》2012年第3期296-299,共4页Technical Acoustics
基 金:国家自然科学基金(51179157;51179158)资助
摘 要:基于贝叶斯滤波的目标跟踪原理,介绍了扩展卡尔曼滤波(Extended Kalman Filter,EKF)和粒子滤波(ParticleFilter,PF)的基本思想和算法实现步骤。在非线性环境下对比分析了EKF算法和PF算法的估计精度,并给出两种方法的适用条件。EKF算法采用Taylor展开的线性变换来近似非线性模型,而PF算法采用一些带有权值的随机样本来表示所需要的后验概率密度。仿真结果表明,在强非线性非高斯环境下,PF算法的跟踪性能远优于EKF算法,当系统非线性强度不大时,EKF算法和PF算法的估计精度相差不大,但PF算法计算复杂,跟踪时间长,实时性差。Based on the principle of Bayesian filtering theory, the basic idea and algorithm description of Extended Kalman Filter (EKF) and particle filter (PF) are introduced. Also, the estimation accuracies of EKF and PF are analyzed and the applicative conditions of the two different methods are given. EKF is a linearization technique which uses linear transformation of first order Taylor series expansion to approximate the nonlinear model. Particle filter represents the required posterior probability density by discrete random measures which are composed of weighted particles. The ex- perimental results demonstrate that the PF approach outperforms the EKF algorithm under strong nonlinear and non-Gaussian environment, while PF algorithm and EKF algorithm have the same tracking performance under weak nonlinear and non-Gaussian environment, but the PF is suffers from high computation complexity.
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28