检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄建军[1] 张雄伟[1] 张亚非[1] 邹霞[1]
机构地区:[1]解放军理工大学指挥自动化学院,南京210007
出 处:《声学学报》2012年第5期539-547,共9页Acta Acustica
基 金:江苏省自然科学基金资助项目(BK2009059)
摘 要:针对以往语音增强算法在非平稳噪声环境下性能急剧下降的问题,基于时频字典学习方法提出了一种新的单通道语音增强算法。首先,提出采用时频字典学习方法对噪声的频谱结构的先验信息进行建模,并将其融入到卷积非负矩阵分解的框架下;然后,在固定噪声时频字典情况下,推导了时变增益和语音时频字典的乘性迭代求解公式;最后,利用该迭代公式更新语音和噪声的时变增益系数以及语音的时频字典,通过语音时频字典和时变增益的卷积运算重构出语音的幅度谱并用二值时频掩蔽方法消除噪声干扰。实验结果表明,在多项语音质量评价指标上,本文算法都取得了更好的结果。在非平稳噪声和低信噪比环境下,相比于多带谱减法和非负稀疏编码去噪算法,本文算法更有效地消除了噪声,增强后的语音具有更好的质量。A time-frequency dictionary learning approach is proposed to enhance speech contaminated by additive non- stationary noise. In this approach, a time-frequency dictionary is used for noise process modeling and incorporated into the convolutive nonnegative matrix factorization framework. The update rules for speech and noise time-varying gains and speech time-frequency dictionary are derived by precomputing the noise dictionary. The magnitude spectrogram of speech is estimated using convolution operation between the learned speech dictionary and the time-varying gains. Finally, noise is removed via binary time-frequency masking. Experiments indicate that the scheme proposed in this paper gives better enhancement results in terms of quality measures of speech. The proposed algorithm outperforms the multiband spectra subtraction and the non-negative sparse coding based noise reduction algorithm in nonstationary noise conditions.
关 键 词:语音增强算法 学习方法 单通道 时频 字典 质量评价指标 噪声环境 非平稳噪声
分 类 号:TN912.35[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222