检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝斯琪[1] 宋博骐[1] 李湃[1] 李耀翔[1] 李谦宁[1] 李祥[1] 宁媛松[1]
机构地区:[1]东北林业大学工程技术学院,哈尔滨150040
出 处:《森林工程》2012年第4期9-11,共3页Forest Engineering
基 金:中央高校基本科研业务费专项资金项目(DL12EB07-2);黑龙江省自然科学基金面上项目(C201111);博士后研究人员落户黑龙江科研启动金;东北林业大学本科生科技创新项目(1110225078)
摘 要:利用近红外光谱(NIR)技术结合BP神经网络定量预测了落叶松木屑的含水率。首先对采集的落叶松木屑原始近红外光谱进行9点平滑及多元散射校正预处理,然后利用主成分分析法提取光谱数据主成分作为BP神经网络的输入,最后建立BP神经网络预测模型并采用交叉验证法对模型进行验证。所建模型校正集的相关系数R为0.98,校正集的均方根误差RMSEC为0.001 7;预测集的相关系数R为0.99,预测集的均方根误差RMSEP为0.001 5。研究表明,此方法可以实现对落叶松木屑含水率的快速预测。An integration of BP neural network and PCA for modeling sawdust water content of Dahurian Larch combined with NIRS was investigated in this paper. The raw spectra were collected and pretreated with 9 point smoothing and multiplieative scatter correction (MSC). Two typical principal components were extracted by PCA with the application of establishing prediction model. U- sing full cross-validation approach to validate the model, the calibration correlation coefficient (R) was 0. 98 and the root mean square error of calibration (RMSEC) was 0. 001 7, the prediction correlation coefficient (R) was 0. 99 while the root mean square error of prediction (RMSEP) was 0. 001 5. The study results showed that this method can rapidly and accurately predict sawdust water content of Dahurian larch.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28