检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
出 处:《系统工程与电子技术》2012年第9期1940-1945,共6页Systems Engineering and Electronics
基 金:国家自然科学基金(50909026);黑龙江省自然科学基金(F200916);中央高校基本业务专项资金(HEUCFR1116)资助课题
摘 要:相比传统支持向量机,尽管孪生支持向量机具有较快的计算速度,然而不具备结构风险最小化和稀疏性,易产生过拟合现象。针对这一问题,提出了一种具有稀疏性的改进的孪生支持向量回归算法。通过在目标函数中加入正则项将结构风险最小化原则引入到孪生支持向量回归算法中,改善了算法的回归性能;同时选择训练样本的一个子集代替全部的训练样本,使核函数由方阵转变成矩形阵,从而使算法具有稀疏性,有效减少运算时间。仿真结果证明了该算法的有效性。Compared with the traditional support vector machine, the twin support vector machine owns faster calculation speed. However, the twin support vector machine is easy to produce over-fitting and has low computational efficiency, which does not have structure risk minimization characteristics and parsimoniousness. In order to solve this problem, an improved sparse twin support vector regression (ISTSVR) algorithm is proposed. The twin support vector regression algorithm combined with structure risk minimization principle improves the regression performance of the al- gorithm by adding a canonical term in the objective function. At the same time, a subset of train samples is selected to take place of the whole train sample, which makes the kernel function from square into a rectangular matrix, thus making the algorithm own sparseness and effectively reduces the computation time. Simulation results are provided to validate the effectiveness of the proposed algorithm.
关 键 词:人工智能 回归 孪生支持向量机 稀疏性 结构风险最小化 过拟合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63