检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:欧阳柳[1] 徐进[1] 龚小谨[1] 刘济林[1]
机构地区:[1]浙江大学信息与电子工程学系,浙江杭州310027
出 处:《浙江大学学报(工学版)》2012年第9期1572-1579,共8页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(60534070;90820306;61001171)
摘 要:通过推导视觉里程计中运动参数估计的不确定度,分析了视觉里程计的定位精度.采用矩阵扰动理论,准确计算了基于最小二乘法运动估计算法给出的6个自由度运动参数估计的不确定性,此方法的计算复杂度为O(1).采用扩展卡尔曼滤波器对视觉里程计和惯性测量单元数据进行融合优化,获得了更加准确的机器人定位和姿态信息.融合实验结果表明,融合后的闭合误差比单一的视觉里程计闭合误差减少近49.5%.The accuracy of visual odometry (VO) was analyzed by deriving the uncertainty of the VO's mo- tion estimation. The proposed uncertainty analysis method, based on matrix perturbation theory, esti- mates the uncertainty of motion parameters in six degrees of freedom (DOF) those are computed by least- squares-method. The computational complexity is O(1) . Then an extended Kalman filter (EKF) is used for fusing VO and inertial measurement unit (IMU) data based on above analysis results to obtain more ac- curate position and attitude values of the robot. Experimental results show that the closed-loop error is re- duced by 49.5 % at most when the uncertainty data fusion with IMU is applied to VO.
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118