检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙理工大学数学与计算科学学院,长沙410004 [2]Minho大学数学系
出 处:《计算数学》2012年第4期397-404,共8页Mathematica Numerica Sinica
基 金:湖南省教育厅重点资助项目(09A002[2009]);FEDER Funds through"Programa Operacional Factores de Competitividade COMPETE";Portuguese Funds through FCT within the Project PEstC/MAT/U10013/2011 and PTDC/MAT/112273/2009;Portugal资助
摘 要:二级迭代法亦称内外迭代法.多级迭代法由多个二级迭代嵌套而成.这些方法特别适合于并行计算,同时可以理解为古典迭代法的延伸或共轭梯度法的预处理子.本文讨论了对称正定Toeplitz线性方程组多级迭代法.首先,基于Toeplitz矩阵的结构,我们给出了多级块Jacobi分裂,然后证明了每一级分裂均为P-正则分裂,并证明了当每一级内迭代次数均为偶数时,迭代法的收敛性.最后通过数值实例验证了此方法的有效性.The two-stage iterative methods are also called inner/outer iterative methods. The multistage iteration is nested by several two-stage iterations. Those methods are especial- ly suitable for parallel computation, and can be viewed as extensions of classical iterative methods or as preconditioners for conjugate gradient methods. In this paper, we consider the multistage iterative methods for solving symmetric positive definite Toeplitz systems. Based on the Toeplitz structure, we first construct a multistage block Jacobi splitting, then we prove that the corresponding splitting at each level is P-regular, and show that the resulting method is convergent when the number of iteration at each level is even. At the end, we give some numerical examples to illustrate the effectiveness of our methods.
关 键 词:TOEPLITZ矩阵 多级迭代法 P-正则分裂 收敛性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.171.222