检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国农业大学食品科学与营养工程学院,国家果蔬加工工程技术研究中心,北京100083
出 处:《光谱学与光谱分析》2012年第11期2997-3001,共5页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(30971979);农业部(948)引进项目(2004-Z33)资助
摘 要:采用近红外光谱和电子鼻对葡萄酒的酒精发酵过程进行了动态采样检测,通过主成分回归和偏最小二乘回归对酒精度变化进行了监控和预测研究。分别建立了近红外光谱、电子鼻以及二者融合数据对酒精度定量分析的主成分回归和偏最小二乘回归模型。结果表明,近红外光谱数据和电子鼻数据的主成分回归和偏最小二乘回归模型的相关系数(r)均大于0.99,但校正均方根误差(RMSEC)和预测均方根误差(RM-SEP)较大。近红外光谱和电子鼻数据融合后,模型质量得到提高,建立的偏最小二乘模型r为0.999 2,RMSEC和RMSEP分别降低为0.206%和0.205%(v/v),定量精度较高。近红外光谱和电子鼻均适用于红酒发酵过程中对酒精度的定量分析,且二者结合应用能提高定量精度。The red wine fermentation needs fast and nondestructive techniques,which can help to control the fermentation process and assure the quality of wine.In the present study,near infrared spectroscopy(NIR) and electronic nose(EN) were used to predict the alcohol content during the red wine alcoholic fermentation.Calibration models were developed between instrumental data and chemical analysis using principal component regression(PCR) and partial least squares regression(PLSR) with cross validation.Good correlations(R〉0.99) were acquired for both the models developed by the NIR and EN data.However,RMSEC and RMSEP were a little larger.Combining NIR and EN can optimize the model and improve the prediction accuracy.The PLSR model based on combined data shows the best correlation(R=0.999 2),with RMSEC and RMSEP being 0.206 and 0.205%(v/v),respectively.Both NIR spectroscopy and EN can predict the alcohol concentration during the alcoholic fermentation of red wine,and the combination of two instruments can improve the analysis precision.Although the measurements were carried out in off-line mode,this study demonstrates that NIR and EN can be used as on line,fast,nondestructive and in time techniques to provide in-time information about the fermentation process and to assure the quality of final products.
分 类 号:S132[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31