全空间R^N中反应扩散方程的非平面行波解  被引量:1

Nonplanar Travelling Fronts of Reaction-Diffusion Equations in R^N

在线阅读下载全文

作  者:黄锐[1] 尹景学[1] 

机构地区:[1]华南师范大学数学科学学院,广东广州510631

出  处:《华南师范大学学报(自然科学版)》2013年第1期1-9,共9页Journal of South China Normal University(Natural Science Edition)

基  金:国家自然科学基金项目(11071099;11001103);高等学校博士学科点专项科研基金项目(20114407110008);教育部留学回国人员科研启动基金(教外司留[2009]1341)

摘  要:介绍全空间RN中反应扩散方程非平面行波解的主要研究结果.通过分析本生灯模型作为非平面行波解的一个例子,给出问题的偏微分方程模型,以及具有鲜明实际背景的点火温度型和双稳态型这2种重要的非线性源.然后介绍具有这2种非线性源的方程非平面行波解的一些定性性质,包括解的存在唯一性、单调性、稳定性和水平集的性质等.讨论了具有KPP型非线性源的方程无穷维非平面行波解流形的存在性,以及解的单调性、稳定性和最小波速的性质等.同时提出了该研究领域内尚未解决的问题.The problems about the nonplanar travelling fronts of reaction - diffusion equations in RN are proposed by some French researchers who have obtained many important results in recent ten years. Some main results about these issues are reviewed. Firstly, as an example of nonplanar travelling fronts, the model of Bunsen flame is intro- duced. The PDE model of this problem with two important nonlinear sources, that is, ignition temperature source and bistable source which have obvious reality background is given accordingly. Then, some qualitative properties of these nonplanar travelling fronts, including the existence, the uniqueness, the monotonicity, the stability and the properties of the level sets of the solutions are reviewed. Next, the results about the equation with KPP type source, including the existence of an infinite - dimensional manifold of nonplanar fronts, the monotonicity, the stability and the properties of minimal propagation speed are introduced. At last, some other relative results in this field are re- viewed and then some open questions in this subject are proposed.

关 键 词:反应-扩散方程 非平面 行波解 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象