黄锐

作品数:7被引量:3H指数:1
导出分析报告
供职机构:华南师范大学数学科学学院更多>>
发文主题:CAHN-HILLIARD方程一维P-LAPLACE方程初值R^N爆破更多>>
发文领域:理学文化科学更多>>
发文期刊:《科教文汇》《吉林大学学报(理学版)》《华南师范大学学报(自然科学版)》更多>>
所获基金:国家自然科学基金国家教育部博士点基金教育部留学回国人员科研启动基金更多>>
-

检索结果分析

署名顺序

  • 全部
  • 第一作者
结果分析中...
条 记 录,以下是1-7
视图:
排序:
含对流的渗流方程的自相似解
《华南师范大学学报(自然科学版)》2016年第3期18-21,共4页邓键 黄锐 
国家自然科学基金项目(11471127;11371153);广东省高等学校优秀青年教师培育计划项目(HS2015007);2015年广东省普通高校青年创新人才项目(2015KQNCX019);广州市珠江科技新星专项基金项目(2013J2200064);华南师范大学青年教师培育基金项目(2012KJ001)
考虑含对流项的渗流方程ut=Δum+x·!uq的径向自相似解的存在性,其中,q>m>1,x RN.注意到该方程具有伸缩不变性,故可考虑形如u(x,t)=t-αφ(t-β|x|)的相似解问题.对该方程建立了相似解的存在性理论,首先确立一个临界指标q*=m+2/N,...
关键词:对流 自相似解 径向解 存在性 
全空间R^N中反应扩散方程的非平面行波解被引量:1
《华南师范大学学报(自然科学版)》2013年第1期1-9,共9页黄锐 尹景学 
国家自然科学基金项目(11071099;11001103);高等学校博士学科点专项科研基金项目(20114407110008);教育部留学回国人员科研启动基金(教外司留[2009]1341)
介绍全空间RN中反应扩散方程非平面行波解的主要研究结果.通过分析本生灯模型作为非平面行波解的一个例子,给出问题的偏微分方程模型,以及具有鲜明实际背景的点火温度型和双稳态型这2种重要的非线性源.然后介绍具有这2种非线性源的方程...
关键词:反应-扩散方程 非平面 行波解 
具浓度相关黏性系数的黏性Cahn-Hilliard方程解的爆破性质被引量:1
《吉林大学学报(理学版)》2011年第3期471-474,共4页黄锐 王泽佳 
国家自然科学基金(批准号:11001103);教育部博士点基金(批准号:200801831002);教育部留学回国人员科研启动基金(批准号:教外司留[2009]1341);吉林大学基本科研业务平台基地建设项目
研究具浓度相关黏性系数的黏性Cahn-Hilliard方程解的爆破性质.利用能量估计方法,在关于黏性系数的两个不同结构性条件下分别证明了初边值问题的解在有限时刻爆破和时间趋于无穷时解趋于无穷两个性质.结果表明,黏性系数所满足的结构性...
关键词:爆破 黏性Cahn-Hilliard方程 浓度相关黏性系数 
高等学校“数学物理方程”课程教学中的一些体会和认识
《科教文汇》2011年第9期88-89,共2页黄锐 
数学物理方程是数学联系实际的一个重要桥梁,同时也是高等学校理工科的一门重要的必修课。本文结合笔者在实际教学中的经验,浅谈一些关于这门课程教学的一些体会和认识。
关键词:数学物理方程 课程的难点重点及解决办法 教学方法与手段 
具浓度相关迁移率和梯度相关位势的一维Cahn-Hilliard方程
《吉林大学学报(理学版)》2009年第6期1140-1144,共5页徐辽沙 黄锐 高天玲 
国家自然科学基金(批准号:10826041J0630104);教育部博士学科点专项科研基金(批准号:200801831002)
利用Leray-Schauder不动点定理证明一类具浓度相关迁移率和梯度相关位势的一维Cahn-H illiard方程古典解的存在性,并利用共轭法证明了相应问题解的惟一性.在一维情形下推广了已有的关于具常迁移率和梯度相关位势的Cahn-H illiard方程初...
关键词:CAHN-HILLIARD方程 浓度相关迁移率 梯度相关位势 解的存在惟一性 
具周期性Cahn-Hilliard型方程的若干结果
《吉林大学学报(理学版)》2009年第2期243-244,共2页李颖花 金春花 黄锐 
国家自然科学基金(批准号:10826041);教育部博士学科点基金(批准号:200801831002)
给出具周期性的Cahn-Hilliard型方程的若干结果,包括初边值问题解的渐近估计、周期解的吸引性以及初边值问题的解和周期解当黏性系数趋于零时的渐近性态.
关键词:Cahn—Hilliard型方程 渐近估计 吸引性 渐近性态 
具非线性源和非局部边值条件的一维p-Laplace方程非负非平凡解的存在性被引量:1
《吉林大学学报(理学版)》2004年第3期359-360,共2页柯媛元 黄锐 王春朋 
研究一类具非线性源和非局部边值条件的一维p Laplace方程,利用锥不动点定理证明了非负非平凡解的存在性.
关键词:非局部边值问题 非负非平凡解 锥不动点定理 
检索报告 对象比较 聚类工具 使用帮助 返回顶部