检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《哈尔滨工业大学学报》2013年第1期19-24,共6页Journal of Harbin Institute of Technology
基 金:国家自然科学基金资助项目(60874054)
摘 要:为了消除噪声对提取传感器信号中故障特征的影响,同时在系统模型不精确条件下,描述故障在系统部件间的传播方式.本文提出了一种基于经验模态分解(EMD)和有向因子图(DFG)的故障诊断方法.对传感器信号进行经验模态分解得到的内部模态函数(IMF),提出采用能量做为其零点区间包含噪声成分的评价指标,基于信号内部模态函数的区块能量消除其噪声成分.对无法精确建模的物理系统,提出使用有向因子图描述系统组成部件间的因果关系,应用概率推理实现故障诊断.通过对航天器电源系统供电模块的实例分析,验证了方法的有效性.To solve the problem of noise elimination in fault feature extraction of sensor signal and describing fault propagation under model uncertainty,this article presents a novel fault diagnosis approach based on empirical mode decomposition(EMD) and directed factor graph(DFG).The EMD method is used to decompose the sensor output signal into a number of intrinsic mode function(IMF) components,a block energy criterion based on the signal samples between two adjacent zero-crossings of IMF is proposed to distinguish the useful signal from noise.Directed factor graph is used to model the cause-effect relations between system components,and as the basis for fault diagnosis through probabilistic reasoning under the model uncertainty.A power supply module of a spacecraft power system is provided as case study to show the feasibility and validity of the proposed method.
关 键 词:故障诊断 经验模态分解 有向因子图 特征提取 故障推理
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3