检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《交通运输工程学报》2013年第1期114-120,共7页Journal of Traffic and Transportation Engineering
基 金:高等学校博士学科点专项科研基金项目(20096102110027);航天科技创新基金项目(CASC201104)
摘 要:为提高运动车辆定位可靠性与精度,研究了基于交通无线传感器网络的运动车辆定位系统。根据车辆位置区域随速度变化的规律,提出了一种变区间搜索量子粒子群算法对测量的车辆定位参量进行坐标粗估计,由于噪声干扰和信号传输延时,坐标粗估计值存在一定的误差。根据车辆的运动特性引入机动目标的当前统计模型,采用扩展Kalman滤波对坐标粗估计值存在的误差进行修正,以定位速度与精度为评价指标对定位方法进行了验证。验证结果表明:无线传感网络节点可大量布设的特点提高了定位可靠性;量子粒子群中引入变区间使定位速度提高了39.13%;Kalman误差修正使得定位精度提高了56.48%。可见,本文方法可以有效提高运动车辆定位速度与准确性。To improve the location reliability and accuracy, moving vehicle location system based on traffic wireless sensor network was studied. Based on the law that vehicle location changed along with its speed, a variable interval quantum particle swarm optimization algorithm was proposed, by which the measured vehicle location parameters could be used for the rough estimation of vehicle coordinates. For the noise interferences and signal delay, the rough estimated values of vehicle coordinates were always prone to error. The current statistical model was introduced into the algorithm under the motion constraints of vehicle, and the extended Kalman filter was used to eliminate the location errors. The proposed method was tested by the evaluation indexes of speed and accuracy. Tested result indicates that the location reliability is improved for that the enormous sum nodes of wireless sensor network can be disposed. The variable interval introduced into the quantum particle swarm optimization increases the convergence speed by 39. 13~. The Kalman filter corrects the errors, and improves toeation precision by 56.48~. The proposed algorithm demonstrates the superiority in terms of location reliability and accuracy. 1 tab, 8 figs, 19 refs.
关 键 词:智能交通系统 车辆定位 无线传感网络 粒子群算法 到达时间差 KALMAN滤波
分 类 号:U495[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117