检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭烈[1] 赵宗艳[1] 赵一兵[1] 杨成[2] 张广西[1]
机构地区:[1]大连理工大学汽车工程学院,大连116024 [2]山东英才学院汽车工程学院,济南250104
出 处:《高技术通讯》2013年第2期203-207,共5页Chinese High Technology Letters
基 金:国家自然科学基金(61104165);辽宁省自然科学基金(20102026)资助项目
摘 要:针对传统的基于梯度方向直方图(HOG)特征的行人检测耗时较长的问题,提出了基于腿部HOG特征优化的行人检测方法。该方法采用加权Fisher线性判别(WLFD)代替线性SVM来选择最具区分性的HOG特征,在保持分类能力的同时减少训练时间和存储空间,而且选择查找表型弱分类器的Gentle Adaboost算法来训练优化权重组合HOG特征,形成一个强分类器来检测行人。通过对线性SVM、加权Fisher与阈值型以及加权Fisher与查找表型三种弱分类器的对比试验表明,基于加权Fisher与查找表型HOG特征优化后不仅提高了检测精度,而且训练时间和检测时间也能明显降低。To solve the time consuming problem of traditional pedestrian detection methods based on histograms of orien- ted gradients (HOG) features, a novel pedestrian detection method based on optimization of the HOG features of legs is presented. The method uses weighted linear Fisher discriminant (WLFD) instead of linear support vector machine (SVM) to construct week classifiers with the aim of selecting high discriminative HOG features, which can significantly decrease the training time and memory while maintaining the comparable classification performance. Moreover, the look up table (LUT) Gentle Adaboost algorithm is selected to optimize the weighted combined HOG features and form a strong classifier to identify the pedestrian. The comparison test shows that the classifier of WLFD with LUT outperforms the weak classifiers of the linear SVM and the WLFD with stump. When the HOG fea- tures are optimized by the classifier of WLFD with LUT a higher detection accuracy with lower training and detection time can be achieved.
关 键 词:交通安全 行人检测 梯度方向直方图(HOG) GENTLE ADABOOST
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15