可删除无序量测的交互多模型算法  

Interacting Multiple Model Algorithm with Removing out-of-sequence Measurement

在线阅读下载全文

作  者:王炜[1,2] 黄心汉[2] 王敏[2] 

机构地区:[1]海军工程大学理学院,武汉430033 [2]华中科技大学,武汉430074

出  处:《火力与指挥控制》2013年第3期17-21,共5页Fire Control & Command Control

基  金:国家自然科学基金(NO.60873032);海军工程大学校基金资助项目(HGDQNEQJJ11001)

摘  要:在集中式多传感器系统中,常会出现如何从当前状态估计中删去已使用过的旧量测的问题。Bar-shalom将需要被删除的量测也称为无序量测。Bar-shalom的可删除无序量测的交互多模型算法是基于标准交互多模型算法和等价量测提出的。然而,在标准交互多模型算法中正态概率密度函数和概率质量函数的混用,导致模型更新权值仅仅是一个近似概率值。并且,等价量测的使用会导致该算法有时候出现性能恶化和Rank Deficiency问题。针对这些缺点,基于最优多传感器融合规则和前向预测最优无序量测删除算法,提出了新型的可删除无序量测的交互多模型算法。该算法没有上述那些缺点,而且仿真表明了新算法的可行性和优越性。In the centralized multi-sensor system,there is often a problem that how to remove measurements used early from the current state estimation,then re-calculate the current state estimation.The bar-shalom also named the measurement that needs to be removed as out-of-sequence measurement(OOSM).The interacting multiple model(IMM) algorithm with removing OOSM presented by Bar-shalom is based on the standard IMM algorithm and Bl1 algorithm.However,in the standard IMM algorithm,the combination of normal probability density function and probability mass function results in that updated model weights are only an approximate probability.Moreover,sometimes the use of equivalent measurement can cause the performance of algorithm to deteriorate and the problem of Rank Deficiency.In order to deal with these drawbacks,based on the optimal multi-sensor fusion rule by Deng Sun and the globally optimal forward-prediction filtering algorithm with removing OOSM,a novel IMM algorithm is presented.The novel algorithm has not those drawbacks mentioned above.Simulation shows the feasibility and superiority of the new algorithm.

关 键 词:异步融合 无序量测 交互多模型算法 最优融合规则 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象