检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《长安大学学报(自然科学版)》2013年第3期88-93,共6页Journal of Chang’an University(Natural Science Edition)
基 金:国家道路交通安全科技行动计划项目(2009BAG13A05)
摘 要:针对车辆运动的非线性特性,利用比支持向量机(SVM)测试时间短、多样本时具有计算量小的相关向量机(RVM)对车辆行驶状态进行估计。为了能够较为准确地估计车辆行驶状态,采集实车试验数据,利用Kalman滤波器对采集到的车速和横摆角速度数据进行滤波,将滤波后的数据作为RVM的输入。依据贝叶斯理论建立最大似然函数,考虑到横摆角速度和车速变化的差异性,依据不同迭代次数下最大似然估计值、伽马值以及值的差异性确定最佳的迭代次数,保证模型具有较短的测试时间和较高的击中概率。有效性验证结果表明:该模型能够较为准确地逼近待估计样本的真值,其中波动性较大的横摆角速度所需要的迭代次数更多,伽马值和值的变化更为迅速,收敛速度较快。Because vehicle movement exists nonlinear characteristics,this paper adopted relevance vector machine(RVM) to estimate the vehicle state.The test time of relevance vector machine is shorter than support vector machine(SVM) and the amount of computation is smaller than SVM.In order to estimate vehicle state accurately,Kalman filter was used to filter yaw rate and velocity data after collecting the test data.The filtered data were regarded as the input of relevance vector machine.Then the maximum likelihood function was established according to Bayesian theory.The difference between the change of yaw rate and velocity data was considered.The optimal number of iterations could be determined by gamma values,values difference and the maximum likelihood values in different iterations so as to guarantee the shorter testing time and higher hit probability of this model.Finally,the validation of the model was proved.The results show that this model can approximate to the true values of the estimated samples more accurately.The yaw rates with greater volatility need more number of iterations,gamma values and values change more rapidly,and the convergence speed is faster.2 tabs,9 figs,11 refs.
关 键 词:汽车工程 运动状态 估计 RVM KALMAN滤波
分 类 号:U461.51[机械工程—车辆工程] TP206[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112