检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《教育研究前沿(中英文版)》2013年第2期56-59,共4页Education Research Frontier
基 金:受山东省教育科学规划课题《新课程标准下数学教与学体系的构建与实践》资助(2011GG049).菏泽学院教务立项《数学课程资源的开发和创新型人才的培养》(2011KK003)资助.菏泽学院精品课程群《大学数学系列课程》(2013J005).
摘 要:数学思想方法是中学数学的精髓,在教学中渗透数学思想方法能提高教学效果。本文列举了下列思想方法的渗透及作用:透渗符号化思想方法,加快学生从算术到代数转化的适应能力;渗透化归思想方法,提高学生解决问题的能力;渗透数形结合的思想方法,提高学生的数形转化能力和迁移思维的能力;渗透归纳思想方法,加强学生创造性思维和创新能力的培养;渗透方程与函数的思想方法,培养学生的建模能力;渗透分类讨论思想方法,培养学生全面观察事物,灵活处理问题的能力。加强数学思想方法的教学应用,对于提高教学质量,改变重结果、轻过程,重形式、轻思想的现状,培养高素质人才有着深远而重大的意义。Mathematical thinking is the essence of the mathematics in the phase of middle school, in which penetration mathematical thinking method contributes to the teaching efficiency in practice. This paper has listed some thinking methods, such as, penetration symbolic method that improves students' adaptive ability on the transformation from arithmetic to algebra; penetration normalization method that contributes to the problem-solving ability; penetration of the combination of characters and graphics method that improves the competence both on the transformation between characters and graphics, and knowledge migration; penetration inductive method that strengthens their innovation both on thought and practical ability; penetration equation and function that is responsible for the cultivation of their modeling ability; and penetration classified discussion method that is conductive to the competence on observation all-round and handling problem flexibly. It is of much significance to propel the application of mathematical thinking in teaching practice for the goal of improved teaching quality and the cultivation of highly competent talent.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70