丢番图方程x^4-Dy^2=1的几类可解情形和求解公式  

Some kinds of solvable cases and solving formulas for Diophantine equation x^4-Dy^2=1

在线阅读下载全文

作  者:高显文[1] 邓淙[1] 

机构地区:[1]昭通学院数学系,云南昭通657000

出  处:《高师理科学刊》2013年第4期33-35,共3页Journal of Science of Teachers'College and University

摘  要:利用初等方法及方程x^4-Dy^2=1的解与Pell方程基本解的关系,找到使x^4-Dy^2=1有正整数解的8类D值,并给出求解公式.当D=1 785,7 140,28 560时,能求出方程的一组解,对所给的其它D值,能求出方程的唯一解.结果表明,有无穷多个非平方的正整数D使方程x^4-Dy^2=1有正整数解.To quartic Diophantine equation x4-Dy2=1,found eight kind values of D that make x4-Dy2=1 to have positive integer solutions by elementary method and relation between the solutions of the Diophantine equation and the basic solutions of Pell equation,furthermore gave solving formulas.Gave one group solution when D=1 785,7 140,28 560,and can find its unique solution for other D.The conclusion indicated that there exist infinite non-square positive integer D to make the equation have positive integer solutions.

关 键 词:丢番图方程 PELL方程 基本解 公式解 

分 类 号:O156.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象