检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国石油大学(北京)自动化研究所,北京102249
出 处:《计算机工程与应用》2013年第15期133-135,200,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.21006127;No.20976193);中国石油大学(北京)基础学科研究基金项目资助
摘 要:基于距离函数和损失函数正则化的权值更新模式,使用相关熵距离函数,Itakura-Saito距离函数,指数一次近似距离和相关熵损失函数结合,实现了三种AdaBoost弱分类器权值更新算法。使用UCI数据库数据对提出的三种算法AdaBoostRE,AdaBoostIE,AdaBoostEE与Real AdaBoost,Gentle AdaBoost和Modest AdaBoost算法作了比较,可以看到提出的AdaBoostRE算法预测效果最好,优于Real AdaBoost,Gentle AdaBoost和Modest AdaBoost算法。According to weight update model via distance and lost function regularization, proposed by J.Kivinen and M.K.Warmuth, using relative entropy, Itakura-Saito, first order exponential approximation distance function, combined with relative entropy lost function, this paper devises three sorts of weight update method of weak classifier of AdaBoost. Using the UCI real datasets, the three algorithms AdaBoostRE, AdaBoostlE, AdaBoostEE are compared with three leading assembly classifier: Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Experimental results show promising performance of the proposed method.
关 键 词:距离函数 损失函数 正则化 ADABOOST算法
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31