检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学数学与计量经济学院,湖南长沙410082
出 处:《湖南大学学报(自然科学版)》2013年第7期92-94,共3页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(11271117)
摘 要:研究了矩阵方程AXB=C最小二乘解的秩的范围,利用矩阵的奇异值分解以及Frobenius范数的特征,得到了秩约束下最小二乘解的表达式,并得到了最大秩和最小秩最小二乘解.This paper, we considered the rank range of the least-squares solutions of matrix equation AXB = C. By applying the singular value decomposition of matrix and the properties of Frobenius matrix norm, we have obtained the range of the rank and the least-squares solution expression of under rank con- strained. Finally, we have provided the expressions of the least-squares solutions with maximal and mini- mum rank respectively.
关 键 词:最优控制 最小二乘解 秩约束 奇异值分解 FROBENIUS范数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28