一类分数阶脉冲微分包含解的存在性(英文)  被引量:1

The Existence of Solutions for Impulsive Fractional Differential Inclusions

在线阅读下载全文

作  者:朱彦[1] 王良龙[1] 

机构地区:[1]安徽大学数学科学学院,安徽合肥230601

出  处:《应用数学》2013年第4期828-838,共11页Mathematica Applicata

基  金:Supported by the Natural Science Foundation of China (10771001);the Anhui Provincial Natural Science Foundation (1308085MA01);the Research Fund for Doctor Station of Ministry of Education of China (20113401110001)

摘  要:本文研究的是一类分数阶脉冲微分包含解的存在性.首先给出对应的脉冲微分方程解的正确形式,再利用非线性Leray-Schauder选择定理和PC-型Ascoli-Arzela定理证明解的存在性,并举例说明.This paper is concerned with the existence of solutions for impulsive fractional differential inclusions (IFDIs for short). A better presentation formula of solutions for impulsive fractional differential equations is given. By the means of nonlinear alternative Leray-Schauder type and PCtype Ascoli-Arzela Theorem,the existence of solutions for IFDIs is established when the multi-valued right hand side has convex values. The compactness of the solution set is also obtained. Two examples are given to illustrate the main results.

关 键 词:分数阶微分包含 脉冲问题 初值问题 存在性 不动点定理 

分 类 号:O175.14[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象