检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学理学院,陕西西安710072 [2]西安科技大学理学院,陕西西安710054
出 处:《纺织高校基础科学学报》2013年第3期359-363,共5页Basic Sciences Journal of Textile Universities
基 金:国家自然科学基金资助项目(11172233;11002110;71271171);陕西省教育厅科学研究计划项目(2013JK0584);西北工业大学基础研究基金项目(JC20110276)
摘 要:利用Wronskian技巧构造了一类非线性孤子方程新的形式解.首先,给出非线性广义Boussinesq方程的双线性形式,利用Wronskian技巧,构造出该非线性方程所满足的一个线性偏微分条件方程组.然后,求解该微分条件方程组,得到了广义Boussinesq方程的Wronskian行列式解.在此基础上,根据系数矩阵的特征值类型,构造出该非线性广义Boussinesq方程的一类新的精确解即complexiton解.The Wronskian technique is further studied for constructing new Wronskian determinant solu-tions of nonlinear soliton equations .First ,the bilinear form of a generalized Boussinesq equation is giv-en .The linear partial differential equations are obtained with Wronskian technique .Then the Wronskian determinant solutions of the generalized Boussinesq equation are gained by solving the linear partial dif-ferential conditions .Based on these ,complexiton solutions of the generalized Boussinesq equation are constructed .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.190.205