检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州文理学院师范学院
出 处:《计算机应用》2013年第11期3244-3246,3266,共4页journal of Computer Applications
摘 要:针对RSA算法中Z*φ(n)的代数结构问题,提出了一种在强素数条件下应用二次剩余理论进行研究的方法。给出了Z*φ(n)中元素阶的计算公式和元素的最大阶表达式,计算了Z*φ(n)中二次剩余的个数和二次非剩余的个数,同时估计出Z*φ(n)中元素的最大阶上限为φ(φ(n))/4并得到了Z*φ(n)中元素的最大阶达到φ(φ(n))/4的一个充要条件。另外还给出了全部二次剩余构成的子群A1成为循环子群的充分条件及Z*φ(n)的一种分解方法。最后证明了Z*φ(n)可由7个二次非剩余元素生成,商群Z*φ(n)/A1是一个Klein八元群。By making use of the theory of quadratic residues under the condition of strong prime, a method for studying the algebraic structure of Z~ of RSA (Rivest-Shamir-Adleman) algorithm was established in this work. A formula to determine the order of element in Zc*/n) and an expression of maximal order were proposed; in addition, the numbers of quadratic residues and non-residues in the group Z^n) were calculated. This work gave an estimate that the upper bound of maximal order was q^( go(n) )/4 and obtained a necessary and sufficient condition on maximal order being equal to ^( ^p(n) )/4. Furthermore, a sufficient condition for A1 being cyclic group was presented, where Al was a subgroup composed of all quadratic residues in Z^n) , and a method of the decomposition of Z~) was also established. Finally, it was proved that the group Zn) could be generated by seven elements of quadratic non-residues and the quotient group Z)/A1 was a Klein group of order 8.
关 键 词:RSA算法 代数结构 二次剩余 强素数 循环群 欧拉函数
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117