检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科学技术大学,湖南长沙410073 [2]解放军电子工程学院,安徽合肥230037
出 处:《计算机仿真》2013年第11期361-364,387,共5页Computer Simulation
基 金:国家自然科学基金项目(D201213)
摘 要:多分类器集成方法往往能够获得比单个分类器更好的泛化精度,为了解决Bagging和Boosting等集成算法中分类器选择的盲目性和随机性,提出了一种新的神经网络集成方法。在分析神经网络集成泛化误差公式的基础上,利用粒子群算法进行特征选择并保存特征选择的最优解和次优解,引入差异度思想进行基分类器的选择性集成,从而尽量减小集成个体的泛化误差和增大集成的差异度。经计算机仿真研究证明,与Bagging和Boosting集成算法相比,新算法在分类识别中具有较好的泛化性能。Compared with a single classifier, muhi-classifier fusion methods have better generalization perform- ance. In order to resolve the blindness and randomness caused by classifier selections such as bagging and boosting algorithms, a new algorithm of Neural Network Ensemble was proposed. Firstly, with the analysis of the generalization error of Neural Network Ensemble, the Particle Swarm Optimization was put forward to obtain the optimum and sub- optimum solutions of the feature sets. Secondly, in order to reduce the generalization error and increase the difference degree of the ensemble individuals, the base classifiers were assembled by introducing the difference degree. Com- pared with the algorithm of Bagging and Boosting, the computer simulation results show that the generalization per- formance of this new algorithm is feasible in engineering application.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.67.245