检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈大钊[1]
机构地区:[1]邵阳学院理学与信息科学系,湖南邵阳422000
出 处:《邵阳学院学报(自然科学版)》2013年第4期12-19,共8页Journal of Shaoyang University:Natural Science Edition
摘 要:研究积分算子在函数空间中的有界性一直是分析数学的中心问题之一,交换子就是其中一类重要的算子,其重要性在于交换子可以被用来刻划某些函数空间,所以研究与各种积分算子相关的交换子很自然地就显得比较重要而有意义.本文先给出了一类满足变Hrmander条件的奇异积分算子所构成的交换子,然后证明了该交换子的sharp极大函数估计.最后,我们研究了该交换子在Lebesgue空间、Morrey空间以及Triebel-Lizorkin空间上的有界性问题.It is main one of problems in analysis mathematics to study the boundedness of integral operator on function spaces, commutator can serve as a tool to describe some function spaces. As a consequence, it is natural and significant to study commutators concerned with miscellaneous integral operators. On the other hand, singular integral operator is a kind of classic and important operator in the field of harmonic analysis. This paper is mainly to introduce the commutator related to a kind of singular integral operator,and to investigate its boundedness. At the beginning of this paper,both the definition of commutators related to singular integral operators satisfying a variant of H^irmander' s condition is given. And we prove the sharp maximal function inequities of the commutator. Afterwards, we obtain the boundedness of the commutator on Lebesgue, Morrey and Triebel-Lizorkin spaces.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15