一种非规则网格上相容的差分格式  被引量:1

A CONSISTENT FINITE DIFFENCING SCHEME FOR ARBITRARY MESHES

在线阅读下载全文

作  者:李凯[1] 罗远诠[1] 

机构地区:[1]大连理工大学应用数学系

出  处:《高等学校计算数学学报》1991年第4期293-306,共14页Numerical Mathematics A Journal of Chinese Universities

摘  要:A two-dimensional finite-difference technique for irregular meshes is formulated for derivatives up to the second order. The schemes constructed are consistent. For square meshes the schemes for arbitrary meshes will be reduced to the usual central finite difference formulae. Numerical examples showed that the schemes in this paper is of higher accuracy than the linear finite element method and generalized finite difference method suggested by Li Runghua[5].A two-dimensional finite-difference technique for irregular meshes is formulated for derivatives up to the second order. The schemes constructed are consistent. For square meshes the schemes for arbitrary meshes will be reduced to the usual central finite difference formulae. Numerical examples showed that the schemes in this paper is of higher accuracy than the linear finite element method and generalized finite difference method suggested by Li Runghua[5].

关 键 词:差分格式 非规则网格 导数 相容 

分 类 号:O241.3[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象