检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海理工大学学报》2013年第6期541-546,共6页Journal of University of Shanghai For Science and Technology
摘 要:研究了一类具有饱和发生率并且移出率受到白噪声影响的随机SIRS模型.讨论了系统全局正解的存在唯一性与有界性,并通过构造Lyapunov函数,证明了当基本再生数不大于1时,无病平衡点的随机渐近稳定性,给出基本再生数大于1时,随机模型的解围绕确定性模型地方病平衡点震荡的充分条件,最后通过数值仿真验证结论.A stochastic SIRS model with saturation incidence was explored,in which the recovery rate is influenced by white noise.The global existence,uniqueness and boundness of the positive solution of the system were discussed and the stochastical asymptotical stability of disease-free equilibrium was proved when the basic reproduction number is not more than 1 by constructing Lyapunov function.A sufficient criteria for the solution of the stochastic model oscillating around the endemic equilibrium of the deterministic model was also given out while the basic reproduction number is more than 1.Finally,numerical simulations were presented to illustrate the mathematical findings.
关 键 词:随机SIRS模型 LYAPUNOV函数 伊藤公式 随机渐近稳定 渐近行为
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3