检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算数学》2014年第1期75-84,共10页Mathematica Numerica Sinica
基 金:国家自然科学基金项目(11071196)资助
摘 要:利用逆矩阵的Neumann级数形式,将在Schur插值问题中遇到的含未知矩阵二次项之逆的非线性矩阵方程转化为高次多项式矩阵方程,然后采用牛顿算法求高次多项式矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立求非线性矩阵方程的对称解的双迭代算法.双迭代算法仅要求非线性矩阵方程有对称解,不要求它的对称解唯一,也不对它的系数矩阵做附加限定.数值算例表明,双迭代算法是有效的.By using Neumann series of inverse matrix, nonlinear matrix equation with the inverse matrix of quadratic unknown matrix polynomial in the Schur's interpolation problem can be transformed into the high-order polynomial matrix equation. Then Newton's method is applied to find symmetric solution of tile high-order polynomial matrix equation, and the modified conjugate gradient method is used to solve symmetric solution or symmetric least-square solution of linear matrix equation derived from each iterative step of Newton's method. In this way, a double iterative algorithm is established to find symmetric solution of nonlinear matrix equation. Nonlinear matrix equation is only required to have symmetric solution by double iterative algorithm, and the solution may not be unique. Besides, there are not additional limits to the coefficient matrix of the nonlinear matrix equation. Numerical experiments confirm that the double iterative algorithm is effective.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222