检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王邦军[1,2] 李凡长[2] 张莉[2] 于剑[1] 何书萍[2]
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044 [2]苏州大学计算机科学与技术学院,苏州215006
出 处:《模式识别与人工智能》2014年第2期173-178,共6页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金资助项目(No.61033013)
摘 要:K最近邻(KNN)分类简单高效,广泛应用于分类问题或作为分类问题中的比较基准.但实际应用中的数据,特别是结构复杂的高维数据,其特征可能不属于欧氏空间.如何选择样本特征及计算样本点间距离是KNN中的一个难题,文中充分考虑各种影响因素,基于图像区域协方差特征,利用集成的方式,提出一种多协方差李-KNN分类算法.该算法充分利用KNN分类的简单有效性及李群结构的复杂数据表示和距离计算能力,有效解决复杂高维数据的分类问题.手写体数字实验验证该算法具有较好的效果.K-nearest neighbor ( KNN ) classification is simple, efficient and widely used for classification problems or as a base of comparison. However, the data, especially those with complex high-dimensional structures, do not always belong to the Euclidean space in practical application. How to select the features of samples and calculate the distances between them is a hard problem in KNN. With full consideration of various factors, a multi-covariance Lie-KNN classification method is put forward based on the image region covariance. In this method, the simplicity and the validity of KNN and the abilities of Lie group structure to represent complex data and calculate distances are fully used. It effectively solves the classification problems of complex high-dimensional data. Experimental results on handwritten numerals verify its effectiveness.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222