检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴静珠[1] 石瑞杰[1] 陈岩[1] 刘翠玲[1] 徐云[2]
机构地区:[1]北京工商大学计算机与信息工程学院,北京100048 [2]中国农业大学信息与电气工程学院,北京100083
出 处:《食品工业科技》2014年第6期55-58,共4页Science and Technology of Food Industry
基 金:北京市自然科学基金面上项目(4132008);北京教委重点项目(KZ201310011012);北京市属高等学校人才强教项目
摘 要:以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变量消除法筛选波长变量,不但有效减少了波长点数,降低了建模运算量,而且提高了单一种类食用油的识别率,使得总体识别率均高于90%,并在此基础上进一步提出了采用PLS-LDA进行多种类食用油识别的检测流程。实验结果表明PLS-LDA在食用油定性识别检测中具有较好的应用前景和可行性,该方法也可为定性检测食品及农产品品质提供借鉴。This paper choose 6 kinds of edible vegetable oils for a total of 23 samples as a typical tested object. Partial Least Squares-Linear Discriminant Analysis(PLS-LDA) method was employed to quickly identify a certain kind of edible vegetable oil(olive oil, peanut oil and corn oil) based on Raman. Raman backgrounds were subtracted by adaptive iteratively reweighted Penalized Least Squares(airPLS) method and wavelength variables were selected by Monte Carlo Uninformative Variable Elimination(MCUVE) method. The above spectra preprocessing not only effectively reduced the wavelength points and modeling computation,but also improved the general recognition rates higher than 90%, respectively. The process of identifying different kinds of edible oil using PLS-LDA method was suggested further on above basis. The experimental results showed that the PLS-LDA method had good application prospects and feasibility to identify edible oil species. This method provided a reference for processing the similar problems in food and agricultural products quality detection.
关 键 词:偏最小二乘线性判别分析法 拉曼光谱 食用植物油 蒙特卡洛无信息变量消除法
分 类 号:TS207.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3