具时滞物价瑞利方程的Neimark-Sacker分支  

Neimark-Sacker Hopf Bifurcation for Price Reyleigh Equation with Delays

在线阅读下载全文

作  者:吕堂红[1] 

机构地区:[1]长春理工大学理学院,长春130022

出  处:《长春理工大学学报(自然科学版)》2014年第1期120-123,共4页Journal of Changchun University of Science and Technology(Natural Science Edition)

基  金:国家自然科学基金(10726062)

摘  要:研究了以滞量为参数的具时滞物价瑞利方程的数值Hopf分支问题。首先利用欧拉方法将得到的时滞差分方程表示为映射,然后利用离散动力系统的分支理论,在瑞利方程具有Hopf分支的条件下,讨论了差分方程Hopf分支存在的条件及连续系统与其数值逼近间的关系,最后证明了当连续系统产生Hopf分支时,其Euler离散将产生Neimark-Sacker分支,进而得到结论:Euler离散使得方程的Hopf分支性质得以保持。The numerical Hopf bifurcation for Price Reyleigh equation with delays is investigated,through using a delay as a parameter. At first, the delay deference equation obtained by using Euler method is written as a map. And then according to the theories of bifurcation for discrete dynamical systems,under the condition that Price Reyleigh equation has bifurcations,the conditions of Hopf bifurcation difference equations as well as the relations between successive sys-tem and numerical approximation are discussed. Finally,it is proved that when successive system produces Hopf bifurca-tion,the Euler discretion produces a Neimark-Sacker bifurcation. Further,it draws the conclusion that the Euler discre-tion preserves the features of the Hopf bifurcation.

关 键 词:物价瑞利方程 时滞 EULER方法 HOPF分支 Neimark-Sacker  数值逼近 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象