检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦恺[1] 曹龙汉[1] 牟浩[1] 文迪[1] 张迁[1]
机构地区:[1]重庆通信学院
出 处:《UPS应用》2014年第3期47-50,共4页UPS Applications
摘 要:针对柴油机气门故障的诊断样本少和非线性数据特征等问题,文中提出了一种基于学刁向量量化(LVQ,LearningVectorquantization)神经网络集成的柴油机故障诊断方法,该方法通过使飘LVQ神经两络作为基础学习器.采用Bagging算法对LVQ神经网络分类器进行相对多数投票集成,并用LVQ神经网络.LVQ神经网络集成.BP神经网络和RBF神经网络等方法对柴油机气门故障诊断.对评价结果进行了分析和比较,LVQ神经网络集成对柴油机气门故障诊断的正确率高于其他神经网络,神经网络集成的柴油机气门故障诊断精度高于单个神经网络的精度.
关 键 词:LVQ神经网络 神经网络集成 故障诊断方法 柴油机气门 BAGGING算法 神经网络分类器 RBF神经网络 BP神经网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44