检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡宇清[1]
机构地区:[1]东南大学数学系,南京211100
出 处:《江西科学》2014年第3期275-280,共6页Jiangxi Science
基 金:江苏省普通高校研究生科研创新计划项目(No.3207011102)
摘 要:研究由Laplace方程边值问题对应的边界上的柯西数据重构内部障碍物的形状的问题,其物理背景是由导电介质对应的边界上的电压和电流信息确定介质内部腔体形状的问题。利用格林公式以及双层位势的边界跳跃关系得到一组非线性边界积分方程,从而将边值问题转化为了求解非线性方程组。通过计算非线性积分方程组关于未知数的Frechet导数构造一种迭代算法重构出内部障碍物的形状。最后给出了数值例子,证明了该迭代方法的有效性。Consider the reconstruction of the shape of an inclusion within conducting medium from voltage and current measurements on the accessible boundary of the medium. This problem can be mathematically modeled as an inverse boundary value problem for the Laplace equation. More specifically, our goal is to reconstruct the boundary shape from a knowledge of measured Cauchy pairs on an accessible boundary containing the inclusion inside. By Green's formula and the jump relation of the double-layer potential we get the nonlinear boundary integral equations. Then the boundary value problem is solved in terms of this system of the nonlinear integral equations. We compute the Frechet derivative of the system of nonlinear integral equations with respect to the unknowns and then develop an iterative algorithm to reconstruct the shape of the interior obstacle. The numerical results are presented to show the validity of the proposed scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.145.38