检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学理学院
出 处:《数学进展》2000年第6期531-541,共11页Advances in Mathematics(China)
基 金:国家自然科学基金!(No.19671067)
摘 要:根据紧算子的奇异系统理论,提出一种新的正则化子进而建立了一类新的求解不适定问题的正则化方法.分别通过正则参数的先验选取和后验确定方法,证明了正则解的收敛性并得到了其最优的渐近收敛阶;验证了应用Newton迭代法计算最佳参数的可行性,最后建立了当算子与右端均有扰动时相应的正则化求解策略.文中所述方法完善了一般优化正则化策略的构造理论.According to the theory of singular system of compact operators, a new family of regularizing filters is set forth, and then a new class of reegularization strategies for solving ill-posed problems of the first kind equations is constructed. By a priori and a posteriori choice of the regularization parameter respectively, the optimum asymptotic convergence order of the regularized solution is obtained. And, using Newton's iteration, the feasibility of determining the optimal parameter is testified. Moreover, in the case that the operator and the right-hand side are both perturbed, an optimal regularization scheme is established applying the above methods. More optimal regularization can be constructed using the same methods, which improve and develop the constructing theory of general regularization strategy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.149